Exploration of Shape Variation Using Localized Components Analysis
نویسندگان
چکیده
منابع مشابه
Localized Components Analysis
We introduce Localized Components Analysis (LoCA) for describing surface shape variation in an ensemble of biomedical objects using a linear subspace of spatially localized shape components. In contrast to earlier methods, LoCA optimizes explicitly for localized components and allows a flexible trade-off between localized and concise representations. Experiments comparing LoCA to a variety of c...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولIntuitive, Localized Analysis of Shape Variability
Analysis of shape variability is important for diagnostic classification and understanding of biological processes. We present a novel shape analysis approach based on a multiscale medial representation. Our method examines shape variability in separate categories, such as global variability in the coarse-scale shape description and localized variability in the fine-scale description. The metho...
متن کاملAnalysis of Human Shape Variation Using Volumetric Techniques
Analyzing human shape variability is important for human system engineering and for animation applications where synthesizing realistic virtual humans is needed to re-create social human activities in historical and cultural context. In this paper, we present a new method for extracting main modes of variations of the human shape from a 3-D anthropometric database. Previous approaches rely on a...
متن کاملLocalized Manifold Harmonics for Spectral Shape Analysis
The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2009
ISSN: 0162-8828
DOI: 10.1109/tpami.2008.287